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The Pressure of a Hard Sphere Fluid 
on a Curved Surface 
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Utilizing the integral equation approach to the hard sphere fluid system 
developed in the preceding paper, the hard sphere hard wall interaction is 
studied. For the case of a flat wall, perturbation solutions of the integral 
equation valid to second and third order in the packing fraction, y, are derived. 
For a surface of arbitrary curvature, an equation of state valid to second order 
in the packing fraction is also derived. When applied to very small cavities, it is 
found that the pressure at high densities is significantly higher than it would be 
for a flat wall. 

KEY WORDS: Hard sphere fluid; wall-atom distribution function; wall con- 
tact values; equation of state. 

1. I N T R O D U C T I O N  

In  the p reced ing  article,  (ll hereaf ter  referred to as I, we have  p resen ted  a 

new n o n l i n e a r  in tegra l  e q u a t i o n  desc r ib ing  the rad ia l  d i s t r i b u t i o n  f u n c t i o n  
of a h a r d  sphere  fluid system. F o r  a test par t ic le  of a r b i t r a r y  radius ,  R, 

s u r r o u n d e d  by  par t ic les  of a c o m m o n  radius ,  a, the rad ia l  d i s t r i b u t i o n  
func t ion ,  g ~ ( x )  satisfies the in tegra l  e q u a t i o n ,  

where  

6 dx'  gR(2)  f ( x ' ,  2)  d2 in  gR(x )  = - yga(a)  a o 

[ (x '  • R) 2 - (2 • R) 2 + 4a2](2 +_ R) 
f ( x ' ,  ~c) - 8a2(x, + R) 2 

(1) 

(2) 
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and 
20 = x '  - 2a, 21 = x '  + 2a for 3a ~< x '  < 5a 

or 
2 o = a, 21 = x '  + 2a for a ~< x '  ~< 3a 

In this paper, we will apply the per turbat ion solution obtained in I by 
extending Shinomoto ' s  method  (2~ to cases where the radius of  the test par- 
ticle is different from the radii of  the generic particles. 

In Section 2, we will perform the limit R ~  oe to find the hard 
sphere hard wall distribution functions in both  the second- and third-order 
approximations.  

In Section 3, we will evaluate the radial distribution function to second 
order at x = a for a general choice of R to find an equat ion of  state for a 
dense fluid in a very small cavity. 

2. THE W A L L - A T O M  DISTRIBUTION FUNCTION 

The probabil i ty of finding a hard sphere a tom a certain distance away 
from a hard wall is simply found by performing the limit R ~ ~ and 
proceeding in the same fashion as in the calculation of the pair distribution 
function in I. This probabili ty can be interpreted as the density profile near 
the wall. 

The development then picks up at Eq. (27) of I. Performing the limit 
R ~ ~ yields 

x - 2 (2) - 3a) 2 (x + 3a) 
lim f ( x ,  2) - and lim ~,1(2)= 

R ~ ~ 4a 2 R ~ ~ 4a 3 

The second-order potential evaluated at R --, oe becomes 

r x ( 5 ) [  ( x - 3 a ) 2 ( x + 3 a ) ]  q ~ 2 ( , y , R = o o )  1 +  y 
y K T  = 2 4a 3 

Y [45x 2 -  1 3 8 a x -  67a 2] (2a) +2-67 
~- - -  [ @ I a ( x ,  R = oo  ) ~- �9 " l ' I b [ x  .v~'2 t , R =  co)]  (2b) 

for the region a ~< x ~< 3a and 

q~II(  X 2 ~ , y, R =  co ) (x--  5a)4 (x2 +14ax + 25a 2) 
y2K T 320a 6 (3a) 

- -  - - ' / ' I I ( x ,  R = c o )  (3b) - -  "/"2 
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for 3a ~< x ~< 5a. Here, y is the packing fraction defined as 

4n y = ~ a3n 

The second-order hard sphere-hard wall distribution function is therefore 
given as 

g U x )  = 

O, a >~ x 

exp[yO~a(x) + y2r a ~< x ~< 3a 

exp [y2OII(x)], 3a ~< x ~< 5a 

1, x >~ 5a 

(4) 

Figure 1 shows this distribution function as a function of x/d, where x is 
the distance from the center of the atom to the surface of the wall and d is 
the diameter of the atom. Again, as for the second-order pair distribution 
function, the characteristic oscillatory behavior is absent in the second- 
order perturbation. 

To find the third-order solution, it is necessary to evaluate the 
integrals of Eqs. (34) to (36) in I. Since the functions in Eq. (2) and (3) are 

Fig. 1. 
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simple polynomials,  these integrations are elementary. The third-order 
radial distribution is given as 

O, a > x  

" 2""Ib(x~ -I- y3~tI3C(x)], a <~ x <~ 3a exp[yl/s~a(x) + Y V3 ! 
g3(x ) 2 I l a  = e x p [ y  r ( x )+y3OI Ib (x ) ] ,  3a<~x<~5a (5) 

exp[y3OIn(x) ] ,  5a ~< x ~< 7a 

1, x >~ 7a 

Noting that the second-order  pair distribution function at the contact  dis- 
tance is 

1009 y2 
g~(a) = 1 + ~ y + - ~  (6) 

the relationships defining the third-order hard wal l -hard  a tom distribution 
function become 

Ia  __ Ia  03 (x) - (x) (7) 

0{b(x) = 

I / / ~ l a ( x )  = @ I I ( x )  

1009 5 Ib ( X9 + 9xSa + 396aTae--4284x6a3 
r = 2-~0- ~ s ~ ( x ) + 2  I/s3 ( x ) +  -- 107520a9 

\ 

- 1134xSa 4 + 200718x4a 5 - -  1177092x3a 6 + 3291444xZa 7 
-1 

107520a 9 

- -5116185xa  8 + 2662769a9\ 

5 I I a  t 5x9 -- 45xSa -- 828x7a2 + 14448x6a3 -- 64386xSa4 
O~Ib(x) = ~ 3  (X) + 53760a 9 

\ 

-- 83034x4a 5 + 1188516x3a 6 - -  7 5 0 8 8 8 x Z a  7 
+ 

53760a 9 

- 8917277xa s -I- 14726719a 9'] 

+ 53760a 9 J 
and 

/ -  x 9 + 9xSa + 396xTa 2 _ 6972x6a 3 + 14994xSa 4 + 450702x4a 5 

107520a 9 

--4004868x3a 6 + l1495988xZa 7 -- 1058841xa 8 -- 33765263a9~ 
) 107520a 9 
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This distribution function, g3(x), is plotted in Fig. 2 as a function of x/d 
for various packing functions, y. As was true for the pair distribution, 
oscillations appear in the third-order solution. However, at high densities, 
the value of the distribution function at the contact point is significantly 
lowered in passing from the second to third order perturbation solution. In 
Figs. 3 and 4, comparisons between the Monte Carlo results of Snook and 
Henderson (3) and the second- and third-order perturbation solutions are 
shown graphically for two different packing fractions. At the lower density, 
Fig. 3, the third-order solution agrees fairly well for x/d < 1. However, the 
height and location of the peak is not predicted very accurately. At the 
higher density, the disagreement is, of course, more pronounced. However, 
a closer inspection of both figures reveals that the higher second-order con- 
tact values are closer to reality. This accounts for the excellent agreement 
Shinomoto found between the second-order equation of state (for a flat 
wall) and the more conventionally derived equations of state. This does not 
mean that the third-order results are incorrect but rather illustrates the 
slow convergence of the solution of the integral equation (1) with a pertur- 
bation method. In Fig. 5, a comparison between the solution of the Per- 

Fig. 2. 
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Fig. 3. Comparison between the Monte Carlo results of Snook and Henderson and the 
second- and third-order perturbation solutions of Eq. (1) at the bulk density n =0.57 
(corresponding to y-0.298). The Monte Carlo results are indicated by the filled circles. The 
chain dash line represents the second-order perturbation. The dashed line represents the third- 
order perturbation. 

cus-Yevick equation ~4/ for the hard walt hard sphere system and the per- 
turbat ion solutions is made at the relatively high packing fraction 
y = 0.419. Again at this high density, the number  of oscillations is greater 
than the third-order per turbat ion solution allows, hence the agreement is 
rather poor. 

3. EQUATION OF STATE FOR HARD, CURVES SURFACES 
The success of the second-order per turbat ion solution in predicting the 

contact  value of the radial distribution for a flat wall suggests that  the 
second-order approximat ion may be useful for finding accurate contact  
values for curved surfaces. For  an arbitrary value of the test particle's cur- 
vature, R, the integrands involved in Eqs. (34)-(36) of I become quite com- 
plicated rational functions. Therefore, in order to avoid errors, the 
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the bulk density n = 0.8 (corresponding to y = 0.419). The perturbation solutions are indicated 
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integrations have been done in closed form with the algebraic manipulat ion 
routine R E D U C E 2 .  (5) 

The result for the second-order potential evaluated at x = a is given as 

c}~2(x = a, y, R ) / k T =  M ( a , y ,  R ) / N ( a ,  y, R )  (8) 

where 

M(a ,  y, R )  

and 

= 4 7 8 9 5 3 a 9 y - 4 5 9 2 7 0 a  9 + 358668aSRy - 3061800aSR 

- 9 5 9 3 6 4 a 7 R 2 y -  6327720a7R 2 - 1864296a6R3y - 6667920a6R 3 

- 149 1 2 1 0 a S R 4 y _  4207140aSR 4 - 683424a4RSy - 1693440a4R 5 

-- 1 9 3 2 8 4 a 3 R 6 y - 4 4 1 0 0 0 a 3 R  6 -  3 3 5 2 8 a Z R T y -  72240a2R v 

- 3287aRSy - 6790aR 8 - 140Rgy - 280R 9 (9) 

N(a,  y, R)/70 = 6561a 9 + 24057aSR + 37908a7R 2 + 34020a6R 3 

+ 19278aSR 4 + 7182aaR 5 + 1764a3R 6 + 276aZR 7 

+ 25aR 8 + R 9 (lo) 

The equat ion of state in the second-order  approximat ion  is then given by 
the contact  value 

z (y ,  R ) = p / n k T =  g~(a) = exp[  - 02(I a, y, R ) / k T ]  (11) 

For  R =  _+0% this reduces to Shinomoto ' s  result for the flat wall (2) 

+ 37.87y 5+  . . .  (12) 

As Shinomoto  has pointed out, this compares  very favorably with the Ree 
and Hoover  virial expansion. (6~ In Fig. 6a, the ratio of the gas pressure on 
a curved surface to the pressure on a flat surface as a function of the hard 
sphere packing fraction is plotted for various different positive radii to 
show the relative effect of curvature. Note  that the compressibility factor 
and hence the pressure decreases with decreasing radius of curvature for a 
given packing fraction. As a result, the gas-kinetic pressure on a protrusion 
in a flat wall is actually less than the pressure on the flat portions. 
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g R i ( R j )  ~. ( 1  - -  4 3 )  1 _} 

where 

For the case of small cavities the situation reverses. The curvature is 
now concave and characterized by negative values of R in the present con- 
vention. As the results in Fig. 6b show the compressibility factor and hence 
the pressure increases as the radius of curvature becomes smaller in 
absolute terms. Hence, for the same packing fraction, a gas exerts a greater 
gas-kinetic pressure on a small cavity than on a larger one. This can be 
simply explained by the observation that gas atoms impinging on a con- 
cave surface will on average impart a greater component of linear momen- 
tum perpendicular to this surface than when the surface is flat, or worse 
yet, convex in curvature. This observation also makes it plausible that a 
curvature effect will only become significant when the curvature radius 
approaches the atomic radius of the gas particles. Such systems of small 
cavities can often occur in the defects of an irradiated metal which has been 
subject to a supersaturation of light atoms such as helium or hydrogen. (m) 

A direct quantitative comparison of Eq. (11) with the Percus-Yevick 
theory is available for positive R. Lebowitz et al. (81 has shown that the PY 
contact values obtained from the compressibility relation are given for a 
mixture of hard spheres by 

(16g~,)~( R,Rj '~ 12922 ( R,R, ~2 
\ R , +  Rj/-~ (1 ~-~33)3 \ R , +  R J (13) 

7[ m 

i t  = ~ ,~1= Pi(2Ri)r (14) 

and m is the number of different species. 
To compare the present results with the PY theory, the limiting case of 

a binary mixture with one component's density approaching zero is 
assumed. If Rl=a ,  R2=R,  p l=n ,  and p2--+0, then the moments of 
Eq. (14) become 

~ 3 = y  
~2 = y/Za (15) 

As the PY theory is not exact, a different expression for the contact values 
can be derived using the virial theorem. The virial contact values are 
related to the compressibility contact values by 

gRV(R:) = gC'(R*) ( i Z ~ 3 )  3 \ R , +  R J  (16) 

In Fig. 7a, the results of Eqs. (9) (11) are plotted along with those 
obtained from the compressibility and virial expressions of the PY theory 
for R = 100a. As this radius of curvature represents a very nearly flat sur- 
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face, the present results lie between the two different PY predictions con- 
sistent with Shinomoto's original paper. However, as the radius of cur- 
vature is decreased, the difference between the PY compressibility and 
virial curves begins to shrink. Although this difference never vanishes, at a 
certain value of R, the contact values predicted by Eqs. (9) (11) will lie 
outside of the two PY curves. This is seen for a value of R = 4a as shown in 
Fig. 7b. At R ~  10a, the virial contact values and the present results coin- 
cide. 

5. C O N C L U S I O N S  

Analytic expressions are derived in the flat wall limit for the second- 
and third-order perturbation solutions of a new integral equation for the 
hard sphere fluid system. As a systematic result of the perturbation method, 
the characteristic oscillations of the radial distribution function are not 
observed until the third-order approximation. Even though the pertur- 
bation solution converges rather slowly for large average densities when 
judged by the wall distribution function, the gas-kinetic pressure obtained 
on a flat surface with the second-order perturbation solution is already in 
excellent agreement with the Carnahan-Starling equation for a hard-sphere 
gas. (7/ 

When evaluating the pressure on a curved surface, the situation is not 
quite so clear. For  very small radii of curvature, the second-order pertur- 
bation solution slightly overpredicts the difference between the flat wall and 
curved wall pressures when compared to the Percus Yevick theory. This 
discrepancy is more than likely a result of the relative low order of the 
solution in the packing fraction. However, the intuitive ideas introduced by 
Shinomoto provide an elementary understanding of why the gas kinetic 
pressure exerted in a very small cavity in a solid is significantly larger than 
the pressure exerted on a flat wall: the pressure represents the average 
momentum transfer to the wall by impacting spheres. Contained in this 
average is an average over the cosine of the impact direction. For a small 
cavity, more of the impacts of the hard spheres with the wall are nearly 
perpendicular than in the case of a flat wall or even a convex wall. As a 
result, the angular average is larger, and the pressure increases with 
decreasing cavity radius. This geometrical interpretation of the pressure 
enhancement on a curved surface also forms one of the central ideas of the 
scaled particle theory for liquids. (9/ 
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